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An extension of the experimental method of absorption correction of Flack [Acta Cryst. (1974), A30, 
569-573; J. Appl. Cryst. (1975), 8, 520-521] is presented. The technique may now be applied to crystals of 
any symmetry and may also correct for extinction. The correction is based on intensity data of all forms of 
a few reflexions measured at varying values of the azimuthal angle. The correction is written as a polynom- 
ial-Fourier series, polynomial in intensity and trigonometric in the four diffractometer setting angles. The 
coefficients of this series are determined by least squares with the condition that all corrected intensity 
measurements of a form of reflexions should be 'as nearly equal as possible'. The least squares is imple- 
mented with the (modified) Gram-Schmidt  transformations in a Fortran program called CAMEL 
JOCKEY W I T H  THREE HUMPS. The extended method has been tested on six crystals, some without 
and some with extinction. In one case it is shown that the method may also be used as a misalignment 
correction. 

1. Introduction 

The object of this paper is to describe an absorption- 
extinction correction method based on intensity meas- 
urements from the crystal under study. Notions such 
as the shape or mosaic distribution of the crystal do not 
enter into the theory and thus knowledge of param- 
eters describing these phenomena are not required. 
This makes the method particularly suitable for crys- 
tals of irregular shape or crystals contained within a 
support (e.g. glass capillary with mother liquor, op- 
posed anvils of a high-pressure cell, housing of a liquid- 
helium cryostat or one crystal inside another). 

The use of azimuthal scans as the basis of an experi- 
mental absorption correction has been described 
(Flack, 1974, 1975). In this method, the absorption 
correction is expanded as a Fourier series of the dif- 
fractometer angles and the coefficients of this series are 
determined by least-squares from the experimental 
intensities. We have found this method useful in the 
study of alloy crystals (Flack, Moreau & Parth6, 1974; 
Leroy, Moreau, Paccard & Parth6, 1977; Moreau & 
Paccard, 1976; Moreau, Paccard & Parth6, 1976; 
McNear, Vincent & Parth6, 1976) which suffer from 
high absorption and are of irregular shape. However, 
the formalism that has been used in the previous ver- 
sions of this method limits its application to crystals of 
high symmetry. We have thus attempted to reformulate 
the method in order to extend its applicability to crys- 
tals of any symmetry and to incorporate a correction 
for anisotropic extinction at the same time. 

The data necessary for the current method of absorp- 
tion-extinction correction are intensity measurements 
of a set of reflexions which in the absence of absorp- 
tion-extinction would have exactly the same intensity. 
Such measurements may be obtained from a form of 
reflexions and from azimuthal scans of all reflexions 

of a form. Fuller details concerning the choice of suit- 
able reflexions have been given by Flack (1976). 

2. Theory of absorption-extinction correction 
(a) The basic model 

Let H,,,, be the observed intensity of the reflexion 
h,k,l, measured at the angular position o9,,20,,7~,,~o, 
of a four-circle diffractometer, where n is an integer 
(n = 1,2 ..... N) indexing the different intensity measure- 
ments and m is an integer ( m = l , 2  ..... M) grouping 
symmetry-equivalent reflexions together (i.e. all re- 
flexions in a form have the same value of m). Let G,,,, 
be the corrected intensity of the observation n, obtained 
by multiplying by a correction factor A,. Thus we have 

G,m=A,H,,,, .  (1) 

The form of A for an absorption correction is suggested 
by the observation that A is a function of the four 
diffractometer setting angles 09, 20, X and ~p, and that 
the correction should be cyclic in these angles. Hence 
a four-dimensional Fourier series should be suitable. 
If we further wish the correction to take care of extinc- 
tion, the terms of the Fourier series need to be multi- 
plied by polynomials in the observed intensity. Thus 
we may write 

A =  Z 2 , '  h i ahijklH 
h=O i=-~x j = - ' t  k=-oc, l=-3c 

x cos (io9 +j20 + k'z + lqg) 

+ b'hijk~H h sin (i~o +j20 + kT~ +/tp)}. (2) 

The coefficients a' and b' in this expression are to be 
found from the experimental intensity measurements 
as described below. (2) may be written more succinctly 
by collecting the five summations together into a single 
summation such as 
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A,= Z Cvfv,, (3) 
p=O 

where Cp represents one of the coefficients ahijk  t or 
bhukt and f~, represents one of the functions 

H h c o s  (io) +j20 + kx + lq~) or H h sin (i~ +j20 + kX + lq~). 

(b) An exact constraint on the model 
An inherent weakness of absorption-extinction cor- 

rections made from intensity measurements of equiv- 
alent reflexions may be illustrated by considering ob- 
servations made on a highly absorbing spherical 
crystal also suffering anisotropic extinction. There is 
no variation of intensity amongst symmetry-equivalent 
reflexions even if the azimuthal angle is changed. Thus 
the method 'sees' no absorption or extinction under 
these conditions and the necessary correction for all 
reflexions would have to be an arbitrary constant. 
Even in the general case of an irregular crystal suffering 
anisotropic extinction, the fact that symmetry-equiv- 
alent reflexions are measured at the same value of 20 
means that the Camel method is incapable of 'seeing' 
contributions to the absorption-extinction which are 
a function of 20 only. We thus do not have an absolute 
correction and must devise some means to fix an 
(arbitrary) scale for A. 

The arbitrary scale may be fixed by constraining the 
least-squares determination of the coefficients Cp so 
that the mean absorption-extinction correction over 
the observations should be unity. Formally we wish to 
impose 

1 N 

A, 1. (4) 
N n = l  

Substituting (3) into (4) gives 

-~ Z Cvfp.= l " 
n= X p=O 

Let us define the function fo to have a value of unity 
and thus obtain 

1 N 
Co= 1 -  ~ Z Cp ~ .fp.. (5) 

p= X n= 1 

Eliminating Co from (3) and (5) we obtain 

1 u 
A , = I -  ~ Z CpZ fp.+ Z Cvfv. 

p =  I n= I p =  1 

= 1 + - Z I C P  p - -  fP"-- • 

Writing 
1 N 

gp. = f v , -  ~ ~ fv.,  (7) 
n = l  

we obtain 
A,= 1 + ~ Cvgv., (8) 

p=X 

which is a form similar to (3) but now with a constant 
term. 

(c) Least squares on the model 
We require a least-squares method capable of deter- 

mining the coefficients Cp. Furthermore, although the 
limits on the summations in (2) extend to infinity for an 
exact representation of the absorption-extinction cor- 
rection, we may expect that, with data of limited pre- 
cision, only a relatively small number of the functions 
fp will be significant in the description of A. A further 
objective of the method will thus be to find the func- 
tions necessary to describe A at a certain level of sig- 
nificance. 

Substituting (8) into (1) gives 

G,,.= H,,, + H,m ~ Cpgp, . (9) 
p = l  

Consider the G,m to be arranged into sets of values of 
constant m. We require values of Cp which make the 
values of G,m within a set 'as nearly equal as possible' 
for all sets. As we cannot expect the values of G,m 
within a given set m to be exactly equal, we may write 

Gm+q)nm=Hnm+Hnm ~'~ Cpgpn (10) 
p=X 

and determine Gm (m=1,2  .... ,M) and C v (p= 1,2,...) 
in such a way as to minimize 

N 
~ 2 2  

(-On (P nm , 
n = l  

where ~o, is the square root of the weight applied to 
the nth equation (10) (Erskine, 1975). Rearranging (10), 
we obtain 

q).,,={-Gm+H.m ~ Cpgv,}+H,m. (11) 
p = l  

Now compare (11) to the conventional linear least- 
squares problem (without weights) of finding the best 
values of a vector C for which D ~- FC. This is achieved 
by minimizing ~)2 where ~ =  D - F C .  Writing (11) in 
the approximate form, we obtain 

-H,,,~_-Gm+H,,,, ~ Cvgp,, ( n= l , 2 , . . . ,N ) (12 )  
p = l  

where - H,,, corresponds to D, G,, (m = 1,2,..., M) and 
Cp (p= 1,2,...) correspond to C and ( -1 ) ,  H.m.g~,. 
(n = 1,2,..., N) correspond to F. (12) represents an over- 
determined system of equations, for which the normal 
equations method of solution (unweighted) would be 

C = ( F ' F ) -  XF'D. (13) 

The weighted solution of (12) may be obtained by 
multiplying (12) by the square root of the weight and 
applying (13) 

-t.o,,H,,,,,~-oo,,G,,,+ ~ Cvgp,,oo,,H,,r,,. (14) 
p = l  

By this method, it may be shown that 

o2. G,,, (15) G " -  ~ z 
2 , 
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where the summations are over n for all observations 
with the same value of m, i.e. G," is the weighted-mean- 
corrected intensity of the mth equivalent reflexion 
(Erskine, 1975). The sum of squares minimized may be 
written as 

N 

$1 = ~ 09n(Gn'- G " ) 2 . 2  (16) 
n = l  

The normal-equations solution of (14)(for Cp only) 
was used in the previous Camel program (Flack, 1975). 
In brief, the method may be described as follows. Sup- 
pose that we already have P functions fp (p = 1,2 .... ,P) 
significant in describing A and that we wish to know 
whether a new function, fp+ 1, will further reduce the 
sum of squares significantly. The normal equations of 
dimension ( P +  1)× (P + 1) are formed and solved for 
the coefficients Cv (p= 1,2 .... , P +  1). The reduction in 
the sum of squares after including the new function 
fp+l will tell us whether it is significant or not. If it is 
not, the function is temporarily rejected and a new one 
is tried. If the function is significant, it is added to the 
list of already accepted functions and a further new 
function is tried. In this way a list of significant func- 
tions can be built up. 

The great disadvantage of the normal-equations 
solution of (14) is that a matrix inversion must be car- 
ried out for each function tried. Furthermore, the di- 
mension of the normal-equations matrix increases 
with the number of functions already accepted. How- 
ever, there exists an alternative least-squares method 
of solution of D -~ FC which enables the sum of squares 
to be calculated prior to matrix inversion. This is the 
(modified) Gram-Schmidt  transformation and is 
described in the Appendix. Further details of the strat- 
egy of function choice are given in § ( f )  below. 

(d) Approximate constraints 
Let us define 

H" = Y 09 H _ /  Y 09 

in a similar way to (15). Some preliminary tests on the 
method thus far described showed that sometimes the 
weighted-mean equivalent intensities before and after 
correction (H" and G,") differed by a physically un- 
reasonable amount. We thus modified the model to 
incorporate the approximate equality of these quan- 
tities as additional constraints. These constraints were 
implemented by the method of weighting (Lawson & 
Hanson, 1974) which introduces M additional obser- 
vational equations as follows. We wish 

2 2 09n Hn," E ton Gnm 
2 - 2 (17) 

Substituting (9) into (17) gives 
N 

(-On g pnH nm E Ec.Y 09n n nm ~ 2 ton H n" 2 + p = l  n = l  
- -  2 E09. z 209n E09n (18) 

(18) may be written 

_2 E O nHnmg.  --~-~-~2n j. (m= 1,2,...,M) 

o r  

0=(0)G," 
{ ~09," 2 

+ Z Cv ~-?"~H","gw"~ (m= 1,2, .. ,M) 
092 " • .:, E n  S 

(19) 

There are M equations of this type which have been 
written in the same form as the observational equations 
(14). Here 09," is the square root of the weight of the 
weighted-mean equivalent reflexion H,". e is a 'down- 
weighting' factor applied to all M equations (19) 
which controls the strength with which the approxi- 
mate constraints are enforced. The (19) are introduced 
as additional observational equations in the least 
squares making N + M observations in all. The sum of 
squares minimized is now 

N M 

$2= ~ 092(Gn,,-G")2+ ~ ~209z"(H"-G")2. (20) 
n = l  " = 1  

(e) Weighting schemes 
The choice of the weighting schemes 09,, and 09,n has 

been based on a consideration of the sum of squares 
$2 minimized in the constrained model. We have 
chosen 09n = 1/Hn," and 09,"= 1/H," so that the sum of 
squares is a measure of the relative deviation of each 
measurement from its associated mean. In this way, 
the weak and strong intensities contribute approxi- 
mately equally to the sum of squares. We have not 
experimented with other weighting schemes. 

( f)  Function choice 
As the functions are tested sequentially for their 

significance in the representation of A, we need an 
operational strategy to know in which order to test 
them. We have used the method proposed by Wind 
(1972). In this method the maximum values H, I, J, K, L 
of h,i,j ,k,l  are fixed at the outset. The functions are 
then ordered according to their value of Q, where 

h i j k 1 (21) 
O = ~ + ~ + ~ + g +  E, 

retaining only those functions for which Q < Q(max). 
Q(max) is a parameter chosen at the outset and would 
normally have a value of between 1 and 2. The functions 
are tested in order of ascending Q thus ensuring that 
low-order functions are tested first. 

Because of the multi-monovariate nature of the 
function-testing algorithm for what should in theory 
be a multivariate analysis it is necessary to run through 
the list of trial functions several times to retest those 
functions which have been temporarily rejected on a 
previous attempt. Following Wind (1972), we have 
chosen to cycle over the list of candidate functions 
three times. 
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A function is accepted if it produces a significant 
reduction in the sum of squares $2. Let R be the current 
residual sum of squares, D be the reduction in $2 
produced on introducing the new function, IvF be the 
number of functions desired in the representation of 
A and IFN be the number of functions already accepted. 
Following Wind (1972). we accept those functions for 
which 

D > R/(IFF -- IvN). (22) 

It should be pointed out, however, that the functions 
G,, (m= 1,2,...,M) are always accepted regardless of 
the value D. The Gram-Schmidt transformations also 
lend themselves readily to a multiple correlation test 
(Flack, 1975). The length squared (W 2) of the Gram-  
Schmidt vector k is an inverse measure of the correla- 
tion (or direct measure of the linear independence) of 
the kth function with all the other accepted functions. 
We have chosen to reject all those functions for which 
W~ is smaller than a quantity 

Z=k.  So, (23) 

where k is a constant chosen by the user and So is the 
value of $2 remaining when the G,,, (m = 1,2,..., M) are 
the only functions included in the model. 

(g) Candidate junctions 
The inherent symmetry of a four-circle diffractom- 

eter permits a simplification in the general polynomial- 
Fourier series (2). Let us assume a conventional four- 
circle diffractometer with setting angles co, 20, g and ¢p. 
We suppose co=0 when the machine is set in the bi- 
secting position for measurement of a reflexion. We 
further assume that diffraction is symmetric with 
respect to reversal of the directions of the incident and 
reflected beams. Under these conditions, given direc- 
tions for the incident and reflected beams with respect 
to the crystal may be attained by one of eight equivalent 
angular settings. 

(1) co, 20, Z, q~ 
(2) co, - 20 ,  - Z ,  ¢p+x 
(3) -co, - 20 ,  Z+rt, q~ 
(4) -co, 20, - ;~+~ ,  ~ + x  
(5) zt+co, - 20 ,  Z, q~ 
(6) rt+co, 20, - Z ,  ~o+rt 
(7) rt-co, 20, Z+x,  4o 
(8) x-co,  - 20 ,  - Z + r t ,  ¢p+rt. (24) 

(Positions 2, 4, 5 and 7 represent a reversal of the inci- 
dent and reflected beam directions with respect to 
positions 1, 3, 6 and 8. Current physical theories of ex- 
tinction do not predict symmetry with respect to this 
reversal although experimental differences seem very 
small (Thornley & Nelmes, 1974). 

We thus wish to construct a Fourier series which 
contains the symmetry represented by (24). Substitut- 

ing (24) into (2) to find equal coefficients and then 
rearranging the result, one obtains 

A(H, co,20,z,q))= ~ 

+E 
+E 
+Z 

+E 

+Z 

+Y 

+I; 
where the notation is 
term 

E i scc<.c +  Scccst 

Z Z taiccsc + bSccss  

Z  aSsc<< + 

+ bS css  

~ ~ ( a f s s s c + b f s s s s )  

~ ~ ( a f s s c c + b f s s c s )  

Z t . 

 Z  taSc <c+ Scs s  1251 

best illustrated by writing the 

+ Z Z t t aSscc  +   sccs 

in full as" 
H 2I  J 2K + 1 2L 

Z Z Z Z Z {Eamjk, Hh 
h = 0  i - - 0  j - - 0  k = 1  ~--0 

X sin (ico) COS (/20) COS (kz) cos (lq~) 

+ bhijktn h sin (ico) cos 020) cos (kz) sin (/q~)]}. 

The change in notation from a' and b' to a and b for 
the coefficients of the Fourier series is intentional. The 
a and b represent sum and differences of the a' and b'. 
Likewise all minus signs have been collected into the 
coefficients a and b. 

Further restrictions on the functions represented by 
(25) are possible. Thus the discussion in § 2(b) shows 
that the coefficients Cho~o0 (except C0oooo) should 
always be zero, implying no variation of the Camel 
correction as a pure function of 20 or intensity. Con- 
sider further the absorption correction measured for 
the incident X-ray beam. With 20 = 0, co = 0 and q~ fixed 
but arbitrary, the absorption correction should not 
vary as a function of Z since this represents a rotation 
of the crystal about the axis of the incident beam. Thus 
functions in cos (ico)cos (/20) should only have values 
of k (the Z index) equal to zero. Likewise 20=0,  
co=r t/2, Z=x/2 puts the q9 axis along the incident 
beam and thus the absorption correction should not 
vary with ~p. Hence functions in sin (ico) cos (/20) sin (kz) 
must have l=  0 only. 

(h) Spherical absorption and isotropic extinction 
The discussion § 2(b) shows that the experimental 

method of absorption-extinction correction is really 
only capable of taking care of anisotropic absorption 
and/or extinction. We thus complete the experimental 
correction by multiplying it by the absorption correc- 
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tion for a sphere of radius equivalent to the crystal 
under study. Methods of calculating this radius are 
given by Flack (1974). For extinction we have to refine 
an isotropic extinction parameter along with the struc- 
tural parameters. 

3. Experimental tests 

We have tested the method on data from crystals 
available in this laboratory. The relevant crystal data 
are given in Table 1 and the measurements used to 
calculate the absorption-extinction correction are 
indicated in Table 2. As criteria for the success of the 
method two parameters are used. These are the 
weighted sum of squares $2 (equation 20) and the 
weighted R obtained on least-squares refinement of 
structural parameters. It will be seen that in all cases 
significant reductions in both these parameters were 
obtained. This fact is important as Cromer (1976) has 
found that use of the previous Camel program 
(Flack, 1975) with insufficient data could produce a re- 
duction in $2 and an increase in R. With our crystals it 
was unfortunately not possible to calculate an absorp- 
tion correction by a Gaussian grid integration or by the 
analytical method and to compare the results with the 
experimental procedure. For Cs3Bi219, Cs3Sb219, 
Ru2Sn3 and SmAu6 it will be seen from the maximum 
value of the order of the intensity function that only 
an absorption correction was attempted whereas for 
C r 3 B T O 1 3  and ScSi the possibility of extinction was 
also considered. In our tests a spherical absorption 
correction was applied whether or not the experimental 
method was being used. The X-RAY 76 system of 
programs (Stewart, 1976) was used. 

Cs3Bi219 and Cs3Sb219 are isomorphous but the 
crystals have very different shapes. The azimuthal scan 
data of C s 3 S b 2 I  9 a r e  of better quality than those of 
Cs3Bi219 . The platelet crystal of Cs3Bi219 needed ca 
three times the number of trigonometric functions as 
the ellipsoidal crystal of Cs3Sb2I 9. 

There are several interesting features in the applica- 
tion of the absorption-extinction method to the crystal 
of orthorhombic ScSi. This crystal is pseudo-spherical 
prepared by Vincent (1976) for accurate electron den- 
sity measurements. The intensities consist of a com- 
plete sphere of reflexion out to sin 0/2 =0.63 A-1 but 
there are no qJ scan measurements. Whereas the value 
of $2 decreases from 1"90 to 1.55, the weighted R of 
structure refinement increases slightly from 0"022 to 
0.024 upon application of the absorption-extinction 
correction. The reason for this is to be found in the 
method of treating the data. Before the least-squares 
structure refinement, all measurements of a form of 
reflexions are averaged together, regardless of whether 
an absorption-extinction correction has been carried 
out. With a whole sphere of data, this procedure is 
tantamount  to an absorption correction excluding the 
spherical part. We are thus comparing two methods of 
making an absorption correction for a crystal which is 
in any case almost a sphere. 

With the ScSi data the maximum permitted value 
of the order of the polynomial function in intensity was 
set to 3, hence allowing an extinction correction. How- 
ever, no function with non-zero order in intensity was 
ever accepted, indicating that the crystal did not suffer 
from anisotropic extinction. This result is in agreement 
with those of Vincent (1976) who found that anisotropic 
extinction parameters for this crystal refined in the 

C o m p o u n d  Crystal specifications 

Cs3Bi219 

Laue Cell 
symmetry  dimensions (A) 

a =  8"404 
6/mmm c = 21" 169 

Cs3Sb219 6/mmm a =  8"350 
c = 20"936 

a =  3"988 
ScSi mmm b =  9"882 

c =  3-659 

a =  6.17 
RuzSn3 4/mmm c =  9"91 

Table 1. Salient values used in the experimental 

C A M E L  JOC K E Y specifications 

Cr3B7013C1 

SmAu 6 

Linear  Spherical Crystal shape 
absorpt ion  absorp t ion  and dimensions 

/~ (cm-  i) /aR (~m) 

245-0 --- 0'8 platelet 
32 × 64 × 80 

Camel function Number  
orders of functions Sum of 

(1) Max tried accepted squares 
(2) Max accepted (1) t r igonometr ic  (1)before  

H I J K L (2) total  (2) after Camel 

0 3 3 6 6 8 12"77 
0 2 ! 2 2 14 4"59 

177-6 --- 1'5 

52"03 --- 0" 1 

270-0 ~ 0-8 

ellipsoid 0 3 3 6 6 3 44.47 
190x 128 × 128 0 2 0 0 2 13 31"96 

pseudo-sphere 3 0 6 6 6 2 1"904 
49 (diameter) 0 0 3 0 2 46 1"553 

'sperical '  0 6 2 6 6 28 2.161 
60 (10) diameter  0 6 1 4 5 34 0.472 

m3m a =  12-132 

a = 10"395 
4/mmm c =  9"706 

41.32 ~0.5 cuboid 
325 x 200 × 150 

1836-0 ~ 5'9 parallelepiped 
100 x 50 x 50 

* With misal ignment opt ion (see text). 

4 6 3 6 6 7 59"4 
1 4 0 3 4 25 48"7 

0 6 4 6 6 31 105-4 
0 4 3 3 4 40 43"0 
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usual way were not significantly different from zero. 
It will be noticed from Table 1 that it was possible to 
reduce the weighted R from 0.022 to 0-019 with a mis- 
alignment option. In this option the variations amongst 
the intensity measurements of a form of reflexions are 
considered to be due to miscentring of the crystal, 
misalignment of the diffractometer or inhomogeneity 
of the incident beam, as well as to absorption-extinc- 
tion. The implementation of this option is achieved by 
relaxing the symmetry of the diffractometer to only 
two positions (1 and 5) in (24) rather than to all eight 
positions. 

The crystal of C r 3 B T O 1 3 C 1  w a s  obtained from Dr 
H. Schmid of the Battelle Memorial Institute, Geneva, 
and is from the same batch as that used by Thornley 
& Nelmes (1974) in their study of highly anisotropic 
extinction. The two crystals show the same character- 
istics of large intensity variation due to extinction. 
As a result of the limited number of intensities meas- 
ured, the structure refinement was carried out with 
variation of only a scale factor, an isotropic extinction 
parameter and four positional variables. The absorp- 
tion-extinction correction method accepted three 
functions having non-zero order in intensity and pro- 
duced a satisfactory reduction in the weighted R. 

The experimental absorption correction of SmAu6 
has done little to reduce the R of the 721 reflexion. This 
may be due to the exceedingly large variation of inten- 
sity observed from this reflexion, the largest net inten- 
sity being 2402 and the smallest 36, a variation of 
6700%. 

4. Computer program 

The absorption-extinction method described here has 

been implemented as a computer program CAMEL 
JOCKEY W I T H  THREE HUMPS written in For- 
tran. The program is written in the style of the 
X-RAY 76 system (Stewart, 1976) in Pidgin Fortran 
and a one-dimensional array with dynamic storage 
allocation. The current program can use intensity data 
supplied from an intermediate file prepared by the 
program DATC05  of X-RAY 76; however the pro- 
gram is being changed to work directly on the X-RAY 
binary data file. 

5. Conclusion 

The experimental tests show that the absorption-ex- 
tinction method described is effective in correcting for 
absorption and extinction. Furthermore, it may be 
useful in correcting for misalignment of the diffrac- 
tometer or crystal. The technique is especially useful 
when the shape of the crystal cannot be conveniently 
defined or when the incident and diffracted beams pass 
through non-uniformly absorbing material. 

We propose to make some further tests on the cur- 
rent experimental method. In particular it is desirable 
to examine a triclinic crystal, to compare the results of 
absorption correction for a crystal with well-defined 
faces by an analytical method and by the experimental 
technique, and to investigate an encapsulated crystal- 
line specimen. Denner, Schulz & d'Amour (1977) are 
trying the technique for an opposed-anvil high-pres- 
sure cell. 

The crystal structure data of the substances used in 
the experimental tests will be published elsewhere. 
This work was supported by the Swiss National Sci- 
ence Foundation under Project No. 2173-0-74. 

tests of the absorption-extinction technique 

Structure least-squares refinement specifications Data source 

sin 0/2 Number  Number 
max of of Reflexions 

(A -~) observations variables chosen 

0.71 768 19 F >  3at  

0"71 727 19 F> 3at 

0"63 104 10 F > 3at  

0-98 840 25 F > 4a~. 

0"60 83 6 F > 0a~ 

0-71 544 18 F > 2av 

Weighted R ( × 103) 
( 1 ) without Camel 
(2) with Camel 

71 

47 

98 

56 

22 
24 
(19)* 

73 

60 

73 

47 

220 

129 

Chabot (1977) 

Chabot (1977) 

Vincent (1976) 

Yvon (1976) 

Flack (1977) 

Fiack & Moreau (1977) 
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Table 2. Resumk of intensity data used in the 
experimental tests of the absorption-extinction 

technique 

ff~ is the initial value of the azimuthal angle, Aft is the step and ¢I  is 
the final value of azimuthal angle. ~b=0 is the bisecting position. ScSi (cont.) 
The mean intensity is given as a ratio ofthe largest intensity measured l 9 1 
in the data collection. Rbaore and Rafte r are calculated from 1 9 3 

R = [ ~ c o , ( l , - i ) 2 / ~ , l . 2 , ]  '/z. 3 9 1 
• • ~ 2 10 1 

The' mean mtensnty, Rbefo,e and Rafter are all multiplied by 103. 2 10 2 

Number tp scan (°) Mean 1 11 1 
1 II 2 forms - inten- 

h k 1 measured @i d~k ~k s sity Rbefore Rafte r Ru2Sn3 

Cs3BizI9 
2 0 3  12 
1 2 4 24 
2 0 9 12 
2 4 9 24 
3 4 9 24 
4 2 21 24 

CsaSb219 
2 0 3 12 
2 1 4 24 
2 4 7 24 
1 2 8 24 
0 4 9 12 
0 2 9 12 
2 4 9 24 
4 3 9 24 
1 1 16 12 
2 4 21 24 

ScSi 

1 1 1 8 
1 1 3 8 
3 1 1 8 
3 1 3 8 
2 2 1 8 
2 2 2 8 
2 2 3 8 
I 3 1 8 
I 3 2 8 
1 3 3 8 
1 3 4 8 
4 2 1 8 
3 3 1 8 
3 3 2 8 
3 3 3 8 
2 4 1 8 
2 4 2 8 
2 4 3 8 
2 4 4 8 
1 5 1 8 
1 5 2 8 
1 5 3 8 
4 4 1 8 
4 4 2 8 
3 5 1 8 
3 5 2 8 

Table 2 (cont.) 

Number ~p scan C) Mean 
of forms - -- - inten- 

h k I measured IPi A~b ~bf sity Rbef .... Rafter 

1 2 2 
0 15 180 314 140 55 4 1 1 
0 15 180 12 172 90 1 5 4 
0 15 180 212 149 55 3 6 6 
0 15 180 28 136 70 5 7 4 
0 15 180 4 199 171 4 7 10 
0 15 180 4 115 99 

Cr3B7013CI 
4 0 0 

0 15 180 451 254 198 6 0 0 
0 15 180 6 259 212 8 0 0 
0 15 180 12 211 158 12 0 0 
0 15 180 1 136 184 14 0 0 
0 15 180 87 185 146 2 2 0 
0 15 180 230 117 124 4 4 0 
0 15 180 40 182 146 8 8 0 
0 15 180 2 205 171 12 8 0 
0 15 180 8 57 106 4 4 2 
0 15 180 5 69 125 6 6 2 

10 6 2 
0 0 16 

0 0 0 661 43 24 12 12 0 
0 0 0 101 46 23 16 16 0 
0 0 0 132 15 10 16 8 8 
0 0 0 46 46 42 20 8 4 
0 0 0 43 38 28 12 4 20 
0 0 0 4 136 129 
0 0 0 8 123 114 SmAu6 
0 0 0 461 43 16 4 1 2 16 
0 0 0 130 43 20 6 0 0 4 
0 0 0 97 39 26 7 2 1 16 
0 0 0 25 40 26 3 3 1 8 
0 0 0 7 67 65 6 6 0 4 
0 0 0 123 17 1! 4 3 5 16 
0 0 0 45 26 27 8 l 6 16 
0 0 0 45 38 30 9 5 6 16 
0 0 0 141 17 10 6 0 12 8 
0 0 0 138 35 14 
0 0 0 44 52 35 
0 0 0 36 50 35 
0 0 0 70 40 23 
0 0 0 7 59 81 
0 0 0 16 49 58 
0 0 0 37 16 19 
0 0 0 45 26 14 
0 0 0 21 23 23 
0 0 0 3 174 175 

8 0 0 0 
8 0 0 0 
8 0 0 0 
8 0 0 0 
8 0 0 0 
8 0 0 0 
8 0 0 0 

5 51 47 
3 126 119 
3 155 143 

49 41 39 
7 97 75 

12 60 60 
53 38 34 

16 - 75 25 75 515 76 27 
16 - 75 25 75 104 67 24 
16 - 75 25 75 125 67 25 
16 - 75 25 75 69 67 37 
16 - 75 25 75 23 76 39 
16 - 75 25 75 12 62 42 

6 -180  10 180 639 205 139 
6 -180  10 180 66 109 73 
6 -180  10 180 251 205 170 
6 - 1 8 0  10 180 192 217 192 
6 - 1 8 0  10 180 51 91 72 

12 0 22-5 175 111 75 64 
12 0 22"5 175 488 152 153 
12 0 22"5 175 156 111 99 
24 0 22.5 175 72 129 109 
24 0 22"5 175 17 82 87 
24 0 22"5 175 114 209 208 
48 0 22-5 175 56 87 75 

6 -180  10 180 42 93 76 
12 0 22'5 175 66 116 98 
12 0 22"5 175 9 113 94 
24 0 22-5 175 33 73 73 
48 0 22-5 175 11 76 75 
28 0 22'5 175 11 76 75 

0 10 75 
0 10 75 
0 10 75 
0 10 75 
0 10 75 
0 10 75 
0 10 75 
0 10 75 
0 10 75 

155 499 197 
61 399 205 
68 476 467 

137 651 340 
58 502 297 
39 220 154 
27 186 154 
24 163 208 
29 230 128 

A P P E N D I X  

The G r a m - S c h m i d t  transformation 

3 5 3 8 
2 6 1 8 
2 6 3 8 
1 7 1 8 
1 7 3 8 
4 6 1 8 
3 7 1 8 
3 7 2 8 
2 8 1 8 
2 8 2 8 
2 8 3 8 

0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 

9 66 51 As the Gram-Schmidt  transformation is not well 
76 40 23 known in crystallography, we present here some of its 
27 46 42 important properties. The subject matter is not original 
20 41 26 
6 144 130 and the reader is referred to Lawson & Hanson (1974) 

24 24 20 and to Wind (1972) for fuller details. 
8 101 89 The object of the calculation is to find the 'best' ap- 

81 43 30 proximate solution of the equation 
85 33 19 

5 I lo 83 D _~ FC 
37 25 28 
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where F is an N x P matrix, an element of which is given 
by F,u,, n labelling the N observations and p labelling 
the P functions (N___ P), C is a p-vector of coefficients 
to be determined and d~ are the known observational 
values. (In the least-squares refinement of structural 
parameters in crystallography D corresponds to the 
vector of AF values, F to the matrix of observational 
equations and C to the vector of parameter shifts). The 
approximate solution sought is that of least-squares 
whereby C is chosen such that (D - FC) 2 is a minimum. 
This may be achieved by the Gram-Schmidt  orthog- 
onalizing process in which a matrix W with columns 
Wj is defined as 

W 1 = F 1 

j - 1  

k = l  
(A1) 

It can be shown that W~. W j =  0 i f i¢ j .  We now replace 
the model FC by a new model 

WA,  

and in this new model we wish to minimize 

S - (D - W A )  2. 

Differentiating with respect to a j, we obtain 

D.  W j -  a j W  2 = 0 
o r  

aj = (D. Wj)/W 2 . (A2) 

In order to derive C from A, we first note that (A 1) may 
be written as 

F = W B  

where 
bij=(Fj. Wi)/W 2 if i < j  

bij = 1 if i=j 
bij = 0 if i > j .  

Clearly B is an upper triangular matrix, which may 
easily be inverted. Thus 

FB -1 = W  

and the model WA may be written as (FB-1)A or 
F(B- 1A). Comparing this model to the original we see 
that 

C=(B-1A). 

It is interesting to calculate the reduction in the sum of 
squares of residuals S upon introducing the j th  coef- 
ficient into the model. This may be done before in- 
verting the matrix B. Let Sj be the sum of squares of 
residuals when taking j functions (coeffcients c) into 
consideration. Then 

J J J 
S j = ( D -  ~ a ,Wi )2=D2-2D ~ aiWi+ ~ a2W 2 • 

i = 1  i = 1  i = 1  

But from (A2), 
(D. Wi) = aiW { 

so that 
J J J 

S j = D 2 - 2 ~  a2W/z+ ~ a 2 W 2 = a  2 -  ~ a2W 2. 
i = 1  i = 1  i = 1  

Hence for each new function Fj included in the 
model we will produce a reduction in the sum of 

2 2 squares of residuals of aj Wj. This provides a conve- 
nient way of deciding whether a function Fj should be 
included in the final model before the matrix inversion 
step. 

(A 1) may be written in a form suitable for program- 
ming as 

W(1. )  = F j  + j + l  1 

";ll(k+ 1) - -  Ill/(k! --(Fj W k ) W k / W  2 (k= 1 2, .,j) ~ W j + l  - -  ' ' j - r l  +1 • , "" 

W j + I  = W ? + I  1) 

where the superscripts in parentheses indicate the 
'update'  number of the vector in question. This al- 
gorithm may be rewritten in an alternative form which 
is less subject to machine rounding errors (BjSrk, 
1967), the so-called modified Gram-Schmidt  trans- 
formation (Rice, 1966): 

W~, =Fj+~ 
w ~ k + l  1)--- w~k) 1 --(w~k+), . W k ) W k / W  2 (k = 1 , 2 , . . . , j )  

Wj + 1 = W~J+l 1)- 

This analysis should demonstrate the advantage of the 
(modified) Gram-Schmidt  transformation over re- 
peated inversions of a normal-equations matrix in 
multivariate analysis of the kind used in Camel. 
Matrix inversion in the Gram-Schmidt  calculation 
takes place only once. 
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Lattice Energy Calculations for (C6Hs)sM. ½C6H~2, M = P, As, and Sb: Towards an 
Understanding of Crystal Packing in the Pentaphenyl Group V Compounds 
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Semi-empirical calculations of the energy due to intermolecular interactions have been made for crystals 
• :C6H12, M= P, As, and Sb. This energy has been calculated as a pairwise sum over non- of (C6Hs)sM 1 

bonded atoms; energy minimizations have been performed with respect to the unit-cell parameters and 
molecular positions and orientations. Two sets of potential functions including repulsive and van der 
Waals terms have been employed; one of the sets also contains r-1 (Coulombic) contributions to the 
energy. The experimentally determined structures of the arsenic and antimony compounds have been 
well reproduced, as has the disorder observed for the solvent molecule in the former; it is suggested that 
this disorder is also present in the latter crystal. A comparison of the energies calculated for these solvates 
with those computed previously for unsolvated species predicts the stability of (C6Hs)sP.½C6H12, for 
which no crystallographic data have been previously reported. Crystals of this compound have now been 
identified. These comparisons also show the relative lattice energies of the three possible crystal structures 
seen in this system (Cc, P1, and the P]- cyclohexane solvate considered here) to be the same for all three 
molecules, suggesting that the molecular packing is not greatly affected by a change in the central group 
V atom. 

Introduction 

The study of molecular packing in crystals is impor- 
tant if the influence of intermolecular nonbonded in- 
teractions on molecular geometry or conformation is 
to be understood. We have attacked this problem by 
considering the pentaphenyl compounds of phos- 
phorus, arsenic, and antimony. Three different struc- 
tures have been reported for these molecules (see 
Table 1). In one of these, that of the unsolvated penta- 
phenylantimony crystal, the molecule adopts anoma- 
lous square-pyramidal geometry; in the others, the ex- 
pected trigonal-bipyramidal conformation is observed. 
In previous work (Brock & Ibers, 1976; Brock, 1977) 
we modeled the unsolvated P1 and Cc structures with 
a semi-empirical force field describing intermolecular 
nonbonded interactions; those cell constants and mo- 
lecular positions and orientations which had been 
found experimentally were well reproduced after 
energy minimization. Correlations were drawn be- 
tween the relative magnitudes of the calculated energies 

and the observed crystal form for the three compounds, 
and the observation of square-pyramidal geometry for 
unsolvated pentaphenylantimony was explained as a 
packing effect. 

Table 1. Crystal structures reported for (C6Hs)sM 
compounds, M = P, As, and Sb 

Cc: (C6Hs)sP" (C6HstsAs b 
PI: (C6Hsj.sSb ¢ 

2 a (C6H5)sSb.~6H 12" P l  (solvate): (C6Hs)sAs.½C~H 1 . 

References: (a) Wheatley (1964). (b) Wheatley & Wittig (1962) (unit- 
cell data only). (c) Beauchamp, Bennett & Cotton (1968). (d) Brock & 
Webster (19761. (e) Brabant, Blanck & Beauchamp (1974). 

In this work we have attempted to describe the 
cyclohexane solvated structure of these compounds in 
a similar fashion. In the pentaphenylarsenic solvate 
the cyclohexane molecule is disordered; in a successful 
model the two orientations of this species must have 


